UNISYS

DATE:

August 16, 1994

PPM-94-017

TO:

T. Mecum/311.1

FROM: SUBJECT: K. Sahu/300.1 KS
Radiation Report on FUSE

Part No. AD7545ABQ

Control No. 10975

cc:

A. Sharma/311 Library/300.1

A radiation evaluation was performed on AD7545ABQ (D/A converter) to determine the total dose tolerance of these parts. A brief summary of the test results is provided below. For detailed information, refer to Tables I through IV and Figure 1.

The total dose testing was performed using a cobalt-60 gamma ray source. During the radiation testing, eight parts were irradiated under bias (see Figure 1 for bias configuration), and two parts were used as control samples. The total dose radiation levels were 2.5, 5, 7.5, 10, 15, 20, 30, 50, and 75 krads*. The dose rate was between 0.074 and 1.43 krads/hour, depending on the total dose level (see Table II for radiation schedule). After the 75 krad irradiation, parts were annealed at 25°C for 168 hours, after which the parts were annealed at 100°C for 168 hours. After each radiation exposure and annealing treatment, parts were electrically tested according to the test conditions and the specification limits** listed in Table III.

All parts passed initial electrical measurements. All irradiated parts passed all electrical and functional tests up to and including the 7.5 krad irradiation level. At the 10 krad irradiation level, all parts exceeded the maximum specification limit of \pm 20 μ V for Psrr at Vdd=5V, with readings in the range of 22 μ V to 32 μ V.

After the 15 krad irradiation, all parts continued to exceed the maximum specification limit for Psrr at Vdd=5V and all parts exceeded the maximum specification limit of \pm 7 mV for AE at Vdd=5V and AE at Vdd=15V, with readings in the range of 30 mV to 94 mV, and 12 mV to 29 mV. In addition, all parts exceeded the maximum specification limit of \pm 20 μ V for Psrr at Vdd=15V, with readings in the range of 158 μ V to 477 μ V.

After the 20 krad irradiation, the same failures continued and, in addition, the lout leakage at Vdd=5V reading for S/N 7 thru S/N 10 was in the range of 11 nA to 13 nA, which exceeds the maximum specification limit of ± 7 nA.

After the 30 krad irradiation, the same parts continued to fail the same tests, with gradually increasing readings. In addition S/N 3 to S/N 6 exceeded the maximum specification limit of Iout leakage at Vdd=5V with readings in the range of 20 nA to 24 nA. All parts exceeded the maximum specification limit of 100 μ A for Icc_5V at Vdd=5V and Icc_15V at Vdd=15V, with readings in the range of 101 mA to 319 mA, and 146 mA to 506 mA. The reading for RA at Vdd=5V and at Vdd=15V, for S/N 3 and S/N 7 thru S/N 10 exceeded the maximum specification limit of \pm 1.2 mV, with readings in the range of 1.2 mV to 2 mV, and 1.3 mV to 2.4 mV.

After the 50 krad irradiation, the same failures continued with increasing readings. In addition, all parts except

^{*}The term rads, as used in this document, means rads(silicon). All radiation levels cited are cumulative.

^{**}These are manufacturer's non-irradiation data specification limits. No post-irradiation limits were provided by the manufacturer at the time these tests were performed.

S/N 5 exceeded the maximum specification limit of 2,000 uA for Icc_Vih at Vdd=15V, with the readings in the range of 2,001 μ A to 2,723 μ A, and all parts exceeded the maximum specification limit of \pm 10 nA for Iout leakage at Vdd=15V, with the readings in the range of 54 nA to 105 nA. The reading for DNL at Vdd=15V for S/N 7 thru S/N 10 exceeds the maximum specification limit of \pm 2.4 mV, with the readings in the range of 5 mV to 12 mV.

After the 75 krad irradiation, the same failures continued, with increasing readings. In addition S/N 5 exceeded the maximum specification limit for Icc Vih at Vdd=15V, with a reading of $4,573 \mu A$.

After annealing for 168 hours at 25°C, all parts continued to exceed the maximum limit for Icc_5V at Vdd=5V, Icc_15V at Vdd=15V, Icc_Vih at Vdd=15V, Iout leakage at Vdd=5V and at Vdd=15V, Psrr at Vdd=15V, AE at Vdd=5V and at Vdd=15V, and RA at Vdd=15V, with readings in the range of 852 μ A to 1,040 μ A, 2,747 μ A to 3,686 μ A, 2,748 μ A to 2,870 μ A, 42 nA to 77 nA, 18 nA to 43 nA, 21,580 mV to 27,907 mV, 9,999 mV to 10,000 mV, 1,873 mV to 2,629 mV, and 3.2 mV to 5.2 mV. The readings for Psrr at Vdd=5V for all parts except S/N 6 were within the specification limits.

After annealing for 168 hours at 100°C, no rebound effects were observed.

Table IV provides a summary of the mean and standard deviation values for each parameter after different irradiation exposures and annealing steps.

Any further details about this evaluation can be obtained upon request. If you have any questions, please call me at (301) 731-8954.

ADVISORY ON THE USE OF THIS DOCUMENT

The information contained in this document has been developed solely for the purpose of providing general guidance to employees of the Goddard Space Flight Center (GSFC). This document may be distributed outside GSFC only as a courtesy to other government agencies and contractors. Any distribution of this document, or application or use of the information contained herein, is expressly conditional upon, and is subject to, the following understandings and limitations:

- (a) The information was developed for general guidance only and is subject to change at any time;
- (b) The information was developed under unique GSFC laboratory conditions which may differ substantially from outside conditions;
- (c) GSFC does not warrant the accuracy of the information when applied or used under other than unique GSFC laboratory conditions;
- (d) The information should not be construed as a representation of product performance by either GSFC or the manufacturer;
- (e) Neither the United States government nor any person acting on behalf of the United States government assumes any liability resulting from the application or use of the information.

TABLE I. Part Information

Generic Part Number:

AD7545ABQ

FUSE

Part Number:

AD7545ABQ

FUSE

Control Number:

10975

Charge Number:

C44405

Manufacturer:

Analog Devices

Lot Date Code:

9409

Quantity Tested:

10

Serial Number of

Control Samples:

1, 2

Serial Numbers of

Radiation Sample:

3, 4, 5, 6, 7, 8, 9, 10

Part Function:

D/A Converter

Part Technology:

CMOS

Package Style:

20 PIN DIP

Test Equipment:

Sentry S-50

Test Engineer:

C. Nguyen

^{*} No radiation tolerance/hardness was guaranteed by the manufacturer for this part.

TABLE II. Radiation Schedule for AD7545ABQ

EVENTS	DATE
1) INITIAL ELECTRICAL MEASUREMENTS	05/27/94
2) 2.5 KRAD IRRADIATION (0.125 KRADS/HOUR)	06/13/94
POST-2.5 KRAD ELECTRICAL MEASUREMENT	06/14/94
3) 5 RAD IRRADIATION (0.125 KRADS/HOUR) POST-5 KRAD ELECTRICAL MEASUREMENT (AD540 was down from 6/15/94 to 6/29/94)	06/14/94 06/15/94
4) 7.5 KRAD IRRADIATION (0.125 KRADS/HOUR)	06/29/94
POST-7.5 KRAD ELECTRICAL MEASUREMENT	06/30/94
5) 10 KRAD IRRADIATION (0.07 KRADS/HOUR)	07/1/94
POST-10 KRAD ELECTRICAL MEASUREMENT	07/6/94
6) 15 KRAD IRRADIATION (0.25 KRADS/HOUR)	07/06/94
POST-15 KRAD ELECTRICAL MEASUREMENT	07/07/94
7) 20 KRAD IRRADIATION (0.07 KRADS/HOUR)	06/17/94
POST-20 KRAD ELECTRICAL MEASUREMENT	06/20/94
8) 30 KRAD IRRADIATION (0.3 KRADS/HOUR)	07/07/94
POST-30 KRAD ELECTRICAL MEASUREMENT	07/08/94
9) 50 KRAD IRRADIATION (0.15 KRADS/HOUR)	07/08/94
POST-50 KRAD ELECTRICAL MEASUREMENT	07/11/94
10) 75 KRAD IRRADIATION (1.4 KRADS/HOUR)	07/11/94
POST-75 KRAD ELECTRICAL MEASUREMENT	07/12/94
11) 168-HOUR ANNEALING @25°C	06/24/94
POST-168 HOUR ANNEAL ELECTRICAL MEASUREMENT	07/01/94
12) 168-HOUR ANNEALING @100°C**	07/05/94
POST-168 HOUR ANNEAL ELECTRICAL MEASUREMENT	07/14/94

PARTS WERE IRRADIATED AND ANNEALED UNDER BIAS; SEE FIGURE 1.

^{*}High temperature annealing is performed to accelerate long term time dependent effects (TDE), namely, the "rebound" effect due to the growth of interface states after the radiation exposure. For more information on the need to perform this test, refer to MIL-STD-883D, Method 1019, Para. 3.10.1.

Table III. Electrical Characteristics of AD7545ABQ

TEST CONDITIONS: VCC = 5V, 15V; VREF = -10V unless otherwise noted;

Test temperature : 25oC LIMITS for B version

		· -		
Sequenc	cer: vdd_5v	-		
tst	Test name	Min	Max	Condition
1	Icc_Vil	0.0 ua	2000.0 ua	Inputs $= 0.8v$
2	Icc_Vih	0.0 ua	2000.0 ua	Inputs = $2.4v$
3	Icc_0v	0.0 ua	100.0 ua	Inputs $= 0.0v$
4	Icc_5v	0.0 ua	100.0 ua	Inputs = $5.0v$
5	Iih B0	-1000.0 na	1000.0 na	
6	Iih B1	-1000.0 na	1000.0 na	
7	Iih B2	-1000.0 na	1000.0 na	
8	Iih B3	-1000.0 na	1000.0 na	
9	Iih B4	-1000.0 na	1000.0 na	
10	Iih B5	-1000.0 na	1000.0 na	
11	Iih B6	-1000.0 na	1000.0 na	
12	Iih B7	-1000.0 na	1000.0 na	
13	Iih B8	-1000.0 na	1000.0 na	
14	Iih B9	-1000.0 na	1000.0 na	
15	Iih B10	-1000.0 na	1000.0 na	
16	Iih B11	-1000.0 na	1000.0 na	
10	IIII BII	-1000.0 na	200010 114	
17	Iih CS_	-1000.0 na	1000.0 na	
18	Iih WR_	-1000.0 na	1000.0 na	
		200000		•
19	Iil BO	-1000.0 na	1000.0 na	
20	Iil B1	-1000.0 na	1000.0 na	
21	Iil B2	-1000.0 na	1000.0 na	
22	Iil B3	-1000.0 na	1000.0 na	
23	Iil B4	-1000.0 na	1000.0 na	
24	Iil B5	-1000.0 na	1000.0 na	
25	Iil B6	-1000.0 na	1000.0 na	
		-1000.0 na	1000.0 na	
26			1000.0 na	
27	Iil B8	-1000.0 na	4 4 4 4 4	
28	Iil B9	-1000.0 na		
29	Iil B10	-1000.0 na	1000.0 na	
30	Iil B11	-1000.0 na	1000.0 na	
2.1	741 00	1000 0 55	1000.0 na	
31	Iih CS_	-1000.0 na	1000.0 na	
32	Iih WR_	-1000.0 na	1000.0 na	
33	Iout leakage	-10.0 na	10.0 na	
33	Touc Teanage	E - LUIV Mu ,		
34	Psrr	-20.00 uv	20.00 uv	Vdd = +/- 5%
35	AE	-7.326 mv	7.326 mv	+/- 3 LSB
37	RA	-1.221 mv	1.221 my	+/- 1/2 LSB
38	DNL	-2.442 mv	2.442 mv	+/- 1 LSB
				•

Sequencer: vdd_15v

tst 	Test name	Min 	Max 	Condition
39	Icc_Vil	0.0 ua	2000.0 ua	Inputs = 1.5v
40	Icc_Vih	0.0 ua	2000.0 ua	Inputs = 13.5v
41	Icc_0v	0.0 ua	100.0 ua	Inputs = 0.0v
42	Icc_51v	0.0 ua	100.0 ua	Inputs = 15.0v
	100_514	0.0		
43	Iih B0	-1000.0 na	1000.0 na	
44	Iih B1	-1000.0 na	1000.0 na	
45	Iih B2	-1000.0 na	1000.0 na	
46	Iih B3	-1000.0 na	1000.0 na	
47	Iih B4	-1000.0 na	1000.0 na	
48	Iih B5	-1000.0 na	1000.0 na	
49	Iih B6	-1000.0 na	1000.0 na	
50	Iih B7	-1000.0 na	1000.0 na	
51	Iih B8	-1000.0 na	1000.0 na	
52	Iih B9	-1000.0 na	1000.0 na	
53	Iih B10	-1000.0 na	1000.0 na	
54	Iih B11	-1000.0 na	1000.0 na	
55	Iih CS_	-1000.0 na	1000.0 na	
56	Iih WR_	-1000.0 na	1000.0 na	
57	Iil B0	-1000.0 na	1000.0 na	
58	Iil B1	-1000.0 na	1000.0 na	
59	Til B2	-1000.0 na	1000.0 na	
60	Iil B3	-1000.0 na	1000.0 na	
61	Iil B4	-1000.0 na	1000.0 na	
62	Til B5	-1000.0 na	1000.0 na	
63	Iil B6	-1000.0 na	1000.0 na	
64	Iil B7	-1000.0 na	1000.0 na	
65	Iil B8	-1000.0 na	1000.0 na	•
66	Til B9	-1000.0 na	1000.0 na	
67	Iil B10	-1000.0 na	1000.0 na	
68	Iil B11	-1000.0 na	1000.0 na	
69	Iih CS_	-1000.0 na	1000.0 na	
70	Iih WR	-1000.0 na	1000.0 na	•
71	Iout leakage	-10.0 na	10.0 na	
⁷ . 72	Psrr	-20.00 uv	20.00 uv	Vdd = +/- 5%
73	AE	-7.326 mv	7.326 mv	+/- 3 LSB
74	RA	-1.221 mv	1.221 mv	+/ 1/2 LSB
75	DNL	-2.442 mv	2.442 mv	+/- 1 LSB
•				

Total Dose Exposures and Annealing for AD7545A at Vdd=5v /1 TABLE IVa: Summary of Electrical Measurements after

Annealing		nrs 168	nrs 1168 nr 5°C @100°	nrs 168 5°C @10 sd mean	nrs 168 5°C @10 sd mean 9.1 22	nrs 168 5°C @10 sd mean 9.1 22	5°C @10 sd mean 9.1 22 54 310	5°C @10 sd mean 9.1 22 54 310 0 0.3	5°C @10 sd mean 9.1 22 54 310 0 0.3 0 1	5°C @10 sd mean 9.1 22 54 310 0 0.3 0 1 1.8 -82	5°C @10 sd mean 9.1 22 54 310 0 0.3 54.4 310 0 1 1.8 -82 11.1 172	5°C @100 sd mean 9.1 22 54 310 0 0.3 54.4 310 0 1 1.1 172 24742 36965 2	5°C @10(9.1 22 54 310 54.4 310 0 1 1.8 -82 11.1 172 24742 36965	5°C @10(810(0) 000(0)
	168 hrs		@25°C	@25°(@25° sd mean 16 59	@25° sd mean 16 59 92 371	©25° sd mean 16 59 92 971 0 0.3	@25° sd mean 16 59 92 971 0 0.3	@25° sd mean. 16 59 92 971 92 959	@25° sd mean. 16 59 92 971 92 959 0 1 0 1	825° 84 mean 16 59 92 971 92 959 0 1 2.9 -62 48 -65	@25° sd mean 16 59 92 971 92 959 92 959 92 959 10 1 2.9 -62 42 -65	@25° sd mean 16 59 92 971 92 959 92 959 92 959 1.4 9999	@25° sd mean 16 59 92 971 92 959 92 959 92 959 1.4 9999
ļ	0		_	sd mean						- 	-			
L.	5		mean s	133 15	1211	£:0	1208		-86 2	-168	660515 53	5671 2	36.7 3.	5.6
			pg	9.6	72	0	89.7	0	2.B	9.6	5147	322	0.36	0.02
(28)	30		mean	99.7	250	0.1	199	П	-86	-29.5	19432	1158	1.4	0,12
(Krads			ps t	8.4	8.1	0	16.9	٥	2.8	4.6	2402	141	0.13	0
Exposure	20		nean	94.1	150.1	3 0	30	≓	-96	-27.9	62129	2#6	2 0.51	9.09
3			n sd	5 15.9	9 15.8	1 0.03	9 .1 .6	ं	3 2.6	8 1.9	942 423	22.5	20.02	0 60
Dose	12		sd mean	3.6 62.5	16.3 169	0.12 0.21	0.09 2.9	1	2.2 -83	1.9 -2.8	4.4	0.5 52.7	0.03 0,22	0.09
Total	0		mean s	242	238 16	0.2.0	0.2	1	-80 2	1 -2.9	30.2	6	0.2 0	0.09
Ĕ	크		BQ PS	2.6	8.4	0	<u>`</u>	0	2,8	1.2	8.0	0.5	0	0.3
	S		mean	22.5	267	0.1	0.3	Ţ	-82	-2.7		2.2	-0.2	0.2
	-		sd	1.3	21	90.0	90.0	0	2.8	1,6	9.0	5.0	0.02	6.0
	S		mean	9.6	367	0.1	0.1	ं स्न	-82	7.4-7	7.	1:0	2.0	0.2
			şq	6:0	24	9:0	6:0	٥	6	1,2	0.89	0.5	0.02	0.04
	m		mean	11.7	. 356	10.2	9.7	٥	-B4	-0.08	-2.5	-0.2	0.19	0.06
	Initial		Sd	9.0	27.3	1.03	1.2	0	2.8	1.4	0.7	0.5	٥	٥
	Ĭuï		mean	2.9	429	1.9	2.9	ö	82	-0.6	50.3	-0.1	0.2	0.1
		Spec. Lim./2	nax	2000	2000	100	100	0 1000	1000	10	20	7.3	1.2	2.4
		Spec.	min	u.h 0	υA 0	1.A 0	uA 0	DA -1000	nA -1000	nA -10	uV -20	т.7 - 3.3	mV: -1.2	п∨ -2.4
			Parameters	Icc Vil	Icc Vih	Icc Ov L	Icc 5v u	Tih n.	Iil n.	Iout leakage n	n ared	AE m	R.A. m	INC

7

The mean and standard deviation values were calculated over the eight parts irradiated in this testing. The control samples remained constant throughout the testing and is not included in this table.

2/ These are manufacturer's non-irradiated data sheet specification limits. No post-irradiation limits were provided by the manufacturer at the time the tests were performed.

Radiation sensitive parameters were Icc, Iout leakage, Psrr, AE, RA, and DNL.

Total Dose Exposures and Annealing for AD7545A at Vdd=15v /1 TABLE IVb: Summary of Electrical Measurements after

					_						ľ	Total	Dose		Exposure	ľ	krads						_	A	Annea	ling	
			<u> </u>	Initial	lai	m		വ	Ė	7.5		0.	1	1	7	1	3	30	20	0	7	ហ	1	<u>168 h</u>	s	89	hrs
	š	Spec. Lim./Z	im./2												-									@22°C		@100.(<u>ر</u>
Parameters	=	min	max	mean	şd	mean	ps.	mean	ps	mean	ps	mean	Sd	mean	Sp. Cd.	mean	e ps	mean	ps ps	mean	n ps	mean	5d I	mean	n Do	mean	₩ 60
Icc_Vil	цĀ	٥	2000	289	64.9	944	74	1009	75	1194	5.9	552	95	1452	79	46.8 7	66	1540	96 1	1592	132 🔯	1328	126	927	06	619	57,2
Icc_Vih	цĀ	0	2000	106	13.9	70	0.0	35.6	7.03	23.6	1.8	20.2	2.5	⊅ *¢	6.0	0.1	56	315	143 2	2250 2	282	5046	360 2	Z907	360	559	335
Icc_0v	11A	0	100	7.03	1.6	12,5	o o	6,3	0.1	0.2	0.1	0.22	0.1	0.3	0	\$ 9	0	0.3	િ ૦	€*0	0	0.73	0.31	8. t	0	0.3	0.01
Icc 5v	1.A	Q	100	7.02	8.0	5 2 2	0	6.3	0.1	0.2	0.1	0.2	0.1	kar	2.3		26	293	133 2	2256	282	5049	360	3241	396	559.	334
Ilh	₽ F	-1000	1000	į.	0	1	0	Ą	0	ं को	0	-	•	-	0	-82		.7	0		0	1	0	1	0	, i	0
Til	nA -	-1000	1000	-82	2.8	-84		-82	2.8	-82	2.8	18-	2.4	-82	2.8	-3.8	2.8	-82	2.8	-82	S 8.2	-82	2.82	- 60	1.6	-82	2,8
Icut leakage	Α̈́L	-10	97	1.06	6.0	1.08	9.0	1.5	1.2	9:0	1.5	-3.4	1.9	-1.5	1.2	1842	1.3	-11	3.4	001-	40	132 2	26.1	- SS	9.33	9.5	e:
psrr	'n	-20	20	4.5	1.2	-3,5	0.7	5.3	9.0	3.6	9.0	7+7	1,6	264	118	3.49	773	6334 1	1785	17761 1	1120 2	23269	8825 2	24228	2261 1	14329	13149
AE	.Au	-7.3	7,3	~0.02	0.54	0.2	9.0	0.22	0.5	9:0	5.0	SE CO	0.4	21.2	9.2	2	63	815	152	1617	121	2573	189	2183	282	841	640
RA	- Am	-1.2	1.2	0.24	0.02	90.0	0.02	6.3	0.02	о 2.0	0.02	0.3	0.03	0.3	0.02	0.1	0.1	1. 15.	0.5	7.7	0.3	189	399		0.62	4.3	2.1
DNL	νm	-2.4	2.4	60.0	0		٥	90.0	0	80 0	0	0.1	0	0.1	o		0	.g.1	0	2.0	0 65	624375 483638	55.75	6.3	0.1	0.64	0.35
		1																						ı			

The mean and standard deviation values were calculated over the eight parts irradiated in this testing. The control samples remained constant throughout the testing and is not included in this table.

These are manufacturer's non-irradiated data sheet specification limits. No post-irradiation limits were performed.

Radiation sensitive parameters were Icc, Iout leakage, Psrr, AE, RA, and DNL.

Figure 1. Radiation Bias Circuit for AD7545ABQ

- All resistors are 15K 1/4W